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• Both agents must reach goal simultaneously 

⮞ Sparse reward signal

• Idea: Make us of both agents’ exploration

⮞ Share experience of agents
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Use agent’s experience

Standard (independent) RL

Novel Experience Sharing

Importance 
Sampling

Reuses observation as if it 
were observed locally

Update the 
agent’s 
policy



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )
Estimate of Returns



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )
Baseline



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )

Advantage: high/lowAction



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )



SHARED EXPERIENCE ACTOR-CRITIC

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning

ℒ 𝜙𝑖 = − log 𝜋 𝑎𝑡
𝑖 𝑜𝑡

𝑖; 𝜙𝑖) (𝑟𝑡
𝑖 + 𝛾𝑉 𝑜𝑡+1

𝑖 ; 𝜃𝑖 − 𝑉 𝑜𝑡
𝑖; 𝜃𝑖 )

− 𝜆 σ𝑘≠𝑖
𝜋(𝑎𝑡

𝑘|𝑜𝑡
𝑘;𝜙𝑖)

𝜋(𝑎𝑡
𝑘|𝑜𝑡

𝑘;𝜙𝑘)
log 𝜋 𝑎𝑡

𝑘 𝑜𝑡
𝑘; 𝜙𝑖 (𝑟𝑡

𝑘 + 𝛾𝑉 𝑜𝑡+1
𝑘 ; 𝜃𝑖 − 𝑉 𝑜𝑡

𝑘; 𝜃𝑖 )

Policy Gradient Actor Loss: 
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Value Function Critic Loss:
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Level-Based Foraging (LBF)SMAC – 3m (sparse)Predator Prey (sparse)

Evaluation - Domains
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Evaluation - Baselines

Baselines: (1) Independent Actor-Critic (IAC)
(2) Shared Network Actor-Critic (SNAC)

State-of-the-art MARL: (1) MADDPG
(2) QMIX
(3) ROMA
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Importance weights of one SEAC agent in RWARE, 
(10x11), two agents, hard

• Agents learn similar, but not identical policies 
which improves coordination

• Policies diverge because of …
1. Random network initialization
2. Entropy regularization term in final 

policy loss (based on own policy)
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Best vs. Worst performing agents on RWARE, 
(10x20), four agents

• Agents learn simultaneously which helps in 
exploring promising joint actions more

• Synchronise training progress of agents



Contributions

We propose a novel experience sharing method (Shared Experience Actor-Critic or SEAC) 
that combines gradients of multiple agents to share experience between agents.

• Evaluated in four sparse-reward multi-agent environments

• Consistently outperforms baselines and three state-of-the-art MARL algorithms 
(MADDPG, QMIX, ROMA)

• SEAC learns in fewer steps and converges to higher returns

• In harder tasks, sharing experience makes the difference between not learning at all and 
learning

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning



Conclusion

• Using our method, agents learn similar – but not identical policies. 

• Facilitates coordination between agents

• Exploration is improved:

• Agents tend to pick-up behaviors concurrently: more promising joint actions are 
explored more

• Simple and general method (can be used to extend any on- and even off-policy 
algorithms)

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning



Future Work

• Relax assumptions about the task required to share experience

• Learn lambda for agents (which agents share experience with whom)

Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
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SEAC: https://github.com/uoe-agents/seac

RWARE: https://github.com/uoe-agents/robotic-warehouse

LBF: https://github.com/uoe-agents/lb-foraging

Links to code:
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Arxiv: https://arxiv.org/pdf/2006.07169.pdf

Contact: f.christianos@ed.ac.uk
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